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Abstract: Natural high grade chalcocite samples were leached in column under controlled Eh, constant 
temperature and solution pH to investigate the effect of particle size on dissolution kinetics. Moreover, 
low grade ores of larger size fractions were leached in column using raffinate from the industrial heap 
as an irrigation solution to simulate the real heap conditions. The leaching rate of large particle sizes 
(31-200 mm) were very slow without inflection point which are normally present in the leaching of 
small particle sizes (0.054-31 mm). The effect of particle size was more remarkable in the dissolution of 
large particles than that of small particles during the first stage (<45% dissolution). However, the 
dissolution rate of the second stages (>45% dissolution) were not noticeably affected by the particle size.  
Results of kinetics analysis of leaching of small particles using shrinking core model indicated that the 
first stage was controlled by fluid diffusion and confirmed by the low activation energies (20.98 kJ/mol). 
The kinetics of second stage was controlled by chemical reaction and product layer diffusion and the 
later control became prominent with increasing particle size. Similarly, product layer diffusion was the 
rate-controlling step for the first and second stages of leaching of large particles. X-ray CT and SEM-
EDS studies observed the increasing numbers of cracks and porosity and the formation of sulfur layer 
on the surface of the residue samples. The findings in this study provided some useful implications to 
optimize the heap performance and understand the leaching behavior of large particles. 
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1. Introduction 

Chalcocite (Cu2S) is the most common secondary copper sulfide that contains the highest copper content 
and can be extracted with heap bioleaching which is simple, less energy-intensive and efficient for the 
processing of low grade ore and large particle sizes compared to other extraction techniques (Brierley, 
2001; Ghorbani et al., 2011; Toro et al., 2019).  Although this method has been widely used in industry, 
there are some limitations such as slow leaching kinetics, low recoveries, longer extraction time and 
high operation cost due to acid consumption (Ogbonna et al., 2006; Watling, 2006; Petersen, et al., 2007). 
In order to mitigate these problems, it is essential to understand the kinetics of leaching in the heap 
(Crundwell, 2013). Hence, the leaching kinetics of chalcocite in acidic ferric sulfate media has been 
extensively studied and reported that chalcocite dissolution occurred in two distinct stages (Eqs. 1, 2) 
(Bolorunduro, 1999; Miki et al., 2011; Castillo et al., 2019).  
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𝐶𝑢#𝑆 +	2𝐹𝑒*+ 	→ 	𝐶𝑢#+ + 2𝐹𝑒#+ + CuS                                                         (1) 
CuS + 2𝐹𝑒*+ →	𝐶𝑢#+ + 2𝐹𝑒#+ + 𝑆0                                                           (2) 

The first stage is the conversion of chalcocite into blue-remaining covellite (CuS) via the formation 
of a series of intermediate products and is very rapid and controlled by diffusion of ferric ion through 
liquid film around the particle that was supported by low activation energies (4-25 kJ/mol) (Cheng et 
al., 1991b; Naderi et al., 2015; Pérez et al., 2020). In the second stage, covellite is oxidized to produce 
cupric ion and more than 90% of the sulfide moiety are transformed to elemental sulphur and the rate 
is very slow and sensitive to temperature (Schippers et al., 1999; Miki et al., 2011; Fang et al., 2018). The 
rate-controlling step for the second stage is not fully understood and some previous studies on 
chalcocite dissolution kinetics adopted the stirred leaching whereas the column leaching can help to 
simulate the operating parameters for heap leaching. In addition, the redox potential of solution (Eh) 
significantly dropped at the beginning of the reaction due to the rapid consumption of oxidant and most 
studies failed to control the solution Eh while iron-oxidizing bacteria in the real heap maintain the 
solution Eh at a steady level. Hence, the authors investigated chalcocite dissolution in column leaching 
under controlled Eh and reported that temperature is more sensitive to dissolution rather than Eh and 
ferric concentration (Niu et al., 2015). Moreover, the dissolution was found to have two inflection points 
at 45 and 70% dissolution which indicated the shift of rate-controlling step during the leaching process 
of fine particles (0.03-0.074 mm). The effect of particle size on dissolution kinetics was not fully 
understood although the inflection behavior of dissolution seemed to be dependent of particle size 
(Cheng et al., 1991a; Bolorunduro, 1999; Aracena et al., 2019).  

It is generally believed that ore particle size affects the leaching kinetics and the change in particle 
size has inversed square effect on the leaching rate and recovery increases with decreasing particle size 
(Suni et al., 1989; Bolorunduro , 1999; Miller, 2003). Some studies reported that the particle size only 
influenced the first stage and its effect significantly decreases during second stage due to interfacial 
reaction areas (Bolorunduro, 1999; Hashemzadeh et al., 2019). On the other hand, some argued that the 
leaching rate is independent of particle size (Strömberg et al., 1999; Mazuelos et al., 2001; Deveci et al., 
2004). In summary, most of previous studies had only reported dissolution kinetics for relatively small 
particle sizes ranging from 0.011 to 0.5 mm although the top size of the industrial heaps are 50-180 mm 
for crushed ores and  1-2 m for run-of-mine ores. Therefore, these studies were not able to elucidate the 
leaching behavior of large ore. In addition, there is no literature which reports dissolution kinetics of 
large particles and mineralogical changes during leaching despite the fact that leaching of large particles 
are assumed to follow shrinking core behavior and occur only at the mineral surface and in subsurface 
regions through accessible cracks and pores from the surface (Liddell et.al, 2005; Malmström et al., 2008; 
Ghorbani et.al, 2011).  

This study was attempted to investigate the effects of particle size on dissolution kinetics in column 
leaching under controlled Eh and to determine the rate-controlling steps for the kinetics of chalcocite 
leaching. Therefore, column leaching experiments of high grade chalcocite ore were conducted under 
controlled Eh, high ferric concentration, constant pH and temperature reported by the previous study 
at optimum conditions for chalcocite dissolution (Niu et.al, 2015). Furthermore, low grade chalcocite 
ores were also leached in columns using raffinate from an industrial heap to simulate the real heap 
conditions. The results would deepen the understanding of the leaching behaviors of large particles that 
helps to optimize the performance of commercial heap.  

2. Materials and methods 

2.1. Minerals 

High grade chalcocite mineral from Myanmar Wanbao Mining was used to conduct the chemical 
leaching in column. Firstly, the sample was crushed and ground, then screened into six size fractions  
(-0.074+0.054, -0.105+0.074, -0.5+0.105, -1+0.5, -2+1, -4+2 mm). XRD analysis confirmed that the main 
mineral phase was chalcocite (Fig. 1) and the chemical analysis of each size fraction is given in Table 1. 
The stability of copper grade at all particle sizes is indicative of the complete liberation of chalcocite 
mineral. The crushed samples were kept in nitrogen environment to avoid surface oxidation.  
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For column bioleaching experiments, the low-grade ore from Monywa copper mine in Myanmar 
was used. The ore was crushed and screened into six different size fractions (-9.5+3.35, -19+9.5, -31+19, 
-50+19, -90+50 and -200+50 mm). Table 2 summarized the chemical composition of different size of ore 
samples. The copper grade of different particle size was not uniform due to the nature of low grade ore 
and the large size. 

 
Fig. 1. X-ray pattern of chalcocite mineral (- 0.105+0.074 mm) 

Table 1. Chemical analysis of different-sized fractions of high grade chalcocite samples (wt.%) 

Size Fraction (mm) Cu S  Fe SiO2 
- 0.074 +0.054 64.94 21.75 5.42 3.99 
-0.105 +0.074 60.31 26 10.56 0.94 
-0.5 +0.105 60.46 26.1 9.83 1.05 

-1 +0.5 60.11 24.22 10.52 1.4 
-2 +1 59.13 25.44 11.14 1.18 
-4 +2  59.6 25.24 10.98 1.34 

Table 2. The chemical composition of different size fractions of low-grade ore (wt.%) 

Size Fraction (mm) Cu Fe  
- 9.5+3.5 1.67 7.66 
-19+9.5 0.54 5.92 
-31+19 0.66 5.12 
-50+31 0.42 6.2 
-90+50 0.57 5.36 

-200 +90  0.94 6.29 

2.2. Column leaching experiment 

Chemical leaching experiments were carried out in glass columns shown in Fig. 2 and the experimental 
procedure were adapted from the previous study (Niu et al., 2015). 2 g of high grade chalcocite sample 
was leached under controlled Eh of 750 mV (Vs SHE), pH 1±0.5 and temperature of 45 °C. To avoid the 
depletion of ferric ion during reaction, 10 g/dm3 of ferric ion was used as the main oxidizing agent. As 
recent studies suggested that the concentration of sulfuric acid only had minimal effect on copper 
dissolution (Cheng et al., 1991b; Pérez et al., 2020), 10 g/dm3 of 98 wt% H2SO4 was used to simulate the 
acidity of industrial heap. The controlled Eh was adjusted within 750 ± 5 mV of set value by adding 7.5 
wt% H2O2 and pH was adjusted using H2SO4. For the temperature control, the reactor flask was heated 
by oil bath equipped with thermostat and glass column was regulated by using water bath. During 
leaching experiments, solution samples (2 cm3) were removed periodically. After finishing the leaching 
experiments, the leached residues were washed with pH 1 solution and kept under nitrogen atmosphere 
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for subsequent analysis. The analytical grade Fe2(SO4)3, H2SO4 and H2O2 were used for the preparation 
of leaching solution and controlling pH and Eh. 

For column bioleaching experiments, 40 kg of low grade ores were leached in steel column at 
ambient temperature (35 ºC) by continuously irrigating raffinate from solvent extraction plant of 
Monywa mine at a rate of 3.67 cm3/min. The previous study reported that the dominant microbial 
community in raffinate solution was Ferroplasma and other microbial species (Jia et al., 2018). The same 
microbial groups were fed daily and their activity was checked with optical microscope. The raffinate 
and leachate were sampled daily to measure the concentration of copper, ferrous and ferric. The average 
results of physiochemical parameters of irrigation solution are shown in Table 3. These experiments 
were open cycle using the same daily raffinate to maintain Eh and followed the procedure presented in 
previous study (Jia et al., 2018).  

 
Fig. 2. A schematic of column leaching setup under controlled Eh and pH, 1-pump, 2-chalcocite, 3-

silica, 4-glass beads, 5-water-jacket, 6- pump, 7- H2O2 , 8-Eh controller, 9-water bath, 10-pH meter, 11-
pH electrode, 12-Eh electrode, 13-five-necked flask, 14-magnet, 15-oil bath with stirrer 

Table 3. Physiochemical assays of the irrigation solution 

Parameter Average 
Cu (g/dm3) 0.72 

Free acid (g/dm3) 9.93 
Total iron (g/dm3) 13.96 

Fe3+ (g/dm3) 13.93 
Fe2+ (g/ dm3) 0.03 

pH 1.54 
Eh (mV) 664 

2.3. Kinetics modelling 

The dissolution kinetics of chalcocite was studied to understand the rate-controlling step and to 
optimise the leaching process. As chalcocite leaching is heterogeneous reaction including more than one 
phase, specifically fluid and solid phase, shrinking core model (SCM) (Levenspiel, 1999) for spherical 
particles of unchanging size can be used to study the kinetics. The particle should be spherical and 
remain constant in shape during reaction to satisfy the requirements for SCM. The concentration of solid 
reactant in unreacted core is also assumed to be constant (Nazemi et al., 2011). According to SCM, there 
are three steps controlling the reaction which include no gaseous products. These steps are: 
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Step 1: Diffusion of leaching oxidant through the liquid film surrounding particle. 
𝑥 = 𝑘4𝑡                                                                               (3) 

Step 2: Diffusion of leaching oxidant through the product layer at the surface of unreacted core. 

1 − 3(1 − 𝑥)
;
< + 2(1 − 𝑥) = 𝑘=𝑡                                                            (4) 

Step 3: Chemical reaction of the oxidant with unreacted core at the surface. 

1 − (1 − 𝑥)
>
< = 𝑘?𝑡                                                                     (5) 

where x is the fractions of reacted solid particles, kf, kp and kc are apparent rate constants for the different 
rate controlling steps and  𝑘4 =

*@ABCDE
FGH

 ,𝑘= =
IJ@KLCDE

FGH;
 ,𝑘? =

J@AMCDE
FGH

 , and t is the reaction time. 
If one step has highest resistance to reaction, this step is considered as rate-controlling step. 

Levenspiel (1999) stated equations (Eqs. 3-5) to determine the reaction rate for the above three steps. 
From the plot of the left hand side of each equation against time using experimental data, the equation 
with the correlation coefficient (R2) of closest to 1 is considered to be the rate-controlling step for the 
system. The shrinking core model and its rate-controlling equations were used to analyze the 
dissolution data of different particle sizes ranging from 0.054 to 200 mm by linear regression using least 
square method. The determination of rate-controlling step can be verified by the value of activation 
energies and, therefore, the activation energies were calculated by the Arrhenius equation. 

𝑘 = 𝐴𝑒O
PQR
ST U                                                                          (6) 

where k is the rate constant, A is the frequency factor, Ea is the activation energy (kJ/mol), R is the 
universal gas constant (J/mol.K), and T is the absolute temperature (K).  

2.4. Characterization 

Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to measure total copper 
(Cu) and iron (Fe) concentration. The ferrous concentration was titrated with potassium dichromate 
and the ferric concentration was calculated from the difference between total Fe and ferrous 
concentration. The solution Eh and pH were checked using a FermProbe Pt electrode with Ag/AgCl 
reference electrode (3.8 M KCl) and Mettler Toledo SG8 pH electrode. The structural changes of mineral 
sample before and after leaching were examined using X-ray computed tomography (X-ray CT) because 
it can give the 3-D mineral dissemination and crack distribution in the solid objects (Geet et al., 2000; 
Videla et al., 2007). Xradia 410 Versa X-ray CT scanner was used at 120 keV of X-ray source with pixel 
size of 3.67 µm and exposure time of 5 seconds at 0.0075° rotation. The magnification used was 4X. The 
results of mineralogical changes and surface studies by X-ray CT are evaluated using scanning electron 
microscopy (SEM)-energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Riagaku 
Smartlab X-ray diffractometer was operated at 45 kV and 200 mA for collection of the phases of residues 
from 5° to 90° (2Ɵ) with a scan rate of 0.2 °/s. Original and residue samples were coated with platinum 
by electrodeposition and the microstructures were studied by SEM (JSM-7001, Japan) coupled with EDS 
(INCAX-MAX) at 15 kV accelerating voltage.  

3. Results and discussion 

3.1. Effect of particle size in chemical leaching 

The different particle size fractions (0.054-4 mm) as shown in Table 1 of high grade chalcocite were 
leached in glass columns to study the effect of particle size on chalcocite dissolution kinetics under 
controlled redox potential and moderate temperature of 45 °C. Fig. 3a and 3b illustrate the effect of 
particle size on first stage and second stage of chalcocite dissolution. It can be seen from Fig. 3a that 
particle size had significant effect on the dissolution and the duration to finish the first stage was quite 
fast. For instance, the dissolution of -0.074+0.054 mm only needed about 2.5 hours while the 
approximate duration of 17 hours was required for -4+2 mm. Hence, it can be concluded that the larger 
particle needs more time to achieve the corresponding dissolution than smaller particles.  From the 
second stage of chalcocite dissolution shown in Fig. 3b, it was evident that dissolution kinetics increases 
with decreasing particle size and this finding were consistent with the postulation. Therefore, the final 
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Cu dissolution values were 85% for -4+2 mm and 95% for -0.074+0.054 mm during same leaching time. 
Another interesting finding was that the dissolution curves of second stage had the inflection point 
around 75% Cu dissolution and the dissolution lower and higher than this point were distinct. The 
inflection points were not the same for different particle sizes and the similar behavior was also reported 
in previous studies (Cheng et al., 1991a; Niu et al., 2015). Hence, the dissolution between 45 and 75% 
was noted as the first sub-stage and dissolution beyond 75% as second sub-stage. The dissolution rate 
of first sub-stage was found to be about 20 times faster compared to that of second sub-stage and this 
behaviors were the same for all particle size fractions. Therefore, it can be concluded that initial particle 
size influenced the first stage to a large degree and on the first sub-stage to a slight degree. However, 
particle size effect on second sub-stage was no noticeable. 

To investigate the effect of particle size on the dissolution rate, the dissolution data in Fig. 3a and 3b 
were used to calculate the dissolution rate and the results were presented in Fig. 4a using linear 
regression. The first noticeable thing was the negative slope indicating the decline of dissolution rate 
for larger particles. By comparing the value of slope of each stage, it can be noted that the dissolution 
rate of first stage had half order dependence on the particle size while the dependence of rate of first 
sub-stage and second sub-stage were not obviously found. Besides, the effect of particle size on the 
second sub-stage was found to be the smallest among three stages and hence it suggested that the 
particle size was not related to dissolution mechanisms during second sub-stage and similar findings 
was reported for the leaching of size fractions (0.053-0.212 mm) (Hashemzadeh et al., 2019). Fig 4b 
presents the calculated activation energies for each stage in chalcocite dissolution, which showed the 
first stage only needed least amount of energies rather than other second stages. Since activation 
energies depend on the reaction temperature (Eq. 6), it could be noted that the first stage is not sensitive 
to temperature unlike first sub-stage and second sub-stage.  

 
Fig.  3. Cu dissolution of different particle size of high grade chalcocite ore in two distinct stages: (a) first 

stage, (b) second stage ([Fe3+] = 10 g/dm3, pH = 1.00~1.50, Eh = 750 mV, temperature = 45 °C) 

 
Fig. 4. a) Effect of particle size on the dissolution rate of chalcocite of each stage, b) Arrhenius plot for the 
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Fig. 5 shows the kinetic plot for dissolution of first stage and it can be seen that the copper dissolution 
was a linear function of time and this linear relationship suggested that the first stage was controlled by 
film diffusion. This was confirmed by low activation energies of 20.98 kJ/mol from an Arrhenius plot 
shown in Fig. 4b and agrees with previous studies (Cheng et al., 1991a; Crundwell et al., 2013; 
Hashemzadeh et al., 2019). The specific rate constants were calculated from the slope of the curves and 
the known values of other quantities. The apparent and specific rate constants and correlation 
coefficient of dissolution of each particle size were shown in Table 4. It could be noted that the specific 
rate constants decrease for smaller particle sizes and indicated that the film diffusion control was more 
prominent in the dissolution of small particle sizes (Cheng et al., 1991a). 

 
Fig. 5.  Kinetic plot of film diffusion for first stage dissolution ([Fe3+] = 10 g/dm3, pH = 1.00~1.50, Eh = 

750 mV, temperature = 45 °C) 

Table 4. The apparent rate constant and coefficient of kinetics of first stage ([Fe3+] = 10 g/dm3,  
pH = 1.00~1.50, Eh = 750 mV, temperature = 45 °C) 

Particles size (mm) Film diffusion control, X 
R2 Kf (1/min) KL (1/cm2 min) 

- 0.074 +0.054 0.9923 2.89 x 10-3 1.94 x 10-4 
-0.105 +0.074 0.9905 1.74 x 10-3 1.64 x 10-4 
-0.5 +0.105 0.9883 1.43 x 10-3 4.54 x 10-4 

-1 +0.5 0.9813 1.25 x 10-3 9.89 x 10-4 
-2 +1 0.9802 6.65 x 10-4 1.05 x 10-3 
-4+2 0.9765 4.52 x 10-4 1.43 x 10-3 

The kinetics of second stage was very different from that of the first stage and the Cu dissolution 
became nearly stable around 75% of dissolution. The kinetics of first sub-stage for different particle sizes 
were demonstrated in Fig. 6a-b. Fig. 6a provided convincing evidence showing that R2 for chemical 
reaction control for leaching of smaller particles was closer to 1 than that of larger particles. Accordingly, 
it was concluded that the dissolution process was controlled by chemical reaction at the beginning of 
the first sub-stage but chemical reaction control diminished as the particle size increases. For larger 
particles, Fig. 6b describes that R2 for diffusion through product layer became closer to 1 which showed 
the diffusion control was more prominent. Therefore, it could be noted that the reaction control 
mechanisms shift from chemical reaction to product layer diffusion for larger particles. The reason for 
that postulation is that the length of the diffusion of oxidant from the liquid film around the particle to 
the surface of the unreacted core of large particle size was lengthened compared to small particle size. 
The calculated apparent rate constants were tabulated in Table 5 and it could be noted that the specific 
constant for chemical reaction was found to be independent of particle size and the rate constant for 
diffusion control process was sensitive to the changes in particle size. These calculated values support 
the postulation of shrinking core model (Bobeck et al., 1985).  
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Fig. 6. Plot of (a):1-(1-x)1/3 and (b): 1-2x/3-(1-x)2/3 for first sub-stage of Cu dissolution for different particle 

size ([Fe3+] = 10 g/dm3, pH = 1.00~1.50, Eh = 750 mV, temperature = 45 °C) 

Table 5. The apparent rate constant and coefficient of kinetics of first sub-stage ([Fe3+] = 10 g/dm3,  
pH = 1.00~1.50, Eh = 750 mV, temperature = 45 °C)  

Particles size 
(mm) 

Chemical reaction control, 
1-(1-X)1/3 

Product layer diffusion control, 
1-3(1-X)2/3+2(1-X) 

R2 Kc (1/min) 
Kcc 

(cm/min) 
R2 Kp(1/min) 

De 
(cm2 /min) 

- 0.074 +0.054 0.97139 9.98 x 10-5 1.27 x 10-7 0.95817 - - 
-0.105 +0.074 0.96465 1.04 x 10-4 1.85 x 10-7 0.89301 - - 
-0.5 +0.105 0.93087 - - 0.9911 6.34 x 10-6 5.75 x 10-10 

-1 +0.5 0.89762 - - 0.98047 5.45 x 10-6 3.04 x 10-9 
-2 +1 0.8778 - - 0.98258 3.38 x 10-6 7.54 x 10-9 
-4+2 0.83311 - - 0.99682 1.82 x 10-6 1.63 x 10-8 

 
It is clear from Fig. 7 that the second sub-stage was controlled by diffusion through elemental sulfur 

layer by evaluating the R2 for different particle sizes. A similar result was reported that the diffusion 
control becomes prominent during second sub-stage (Ruiz et al., 1998; Niu et al., 2015). From the 
Arrhenius plot shown in Fig. 4b, the apparent activation energy of 67.07 kJ/mol was obtained for second 
sub-stage. Table 6 shows the constant and effective diffusivity of each particle fraction in second sub-
stage dissolution and their values decrease with decreasing particle size and indicated that the diffusion 
barrier i.e. the elemental sulfur layer, was supposed to be thicker for small particles.  

 
Fig. 7. Plots of 1-2x/3-(1-x)2/3 versus time for the second sub-stage of Cu dissolution for different 

particle sizes ([Fe3+] = 10 g/dm3, pH = 1.00~1.50, Eh = 750 mV, temperature = 45 °C) 
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Table 6. The apparent rate constant and coefficient of kinetics of second sub-stage ([Fe3+] = 10 g/dm3, pH = 
1.00~1.50, Eh = 750 mV, temperature = 45 °C) 

Particles size (mm) 
Product layer diffusion control, 

1-3(1-X)2/3+2(1-X) 
R2 Kp (1/min) De (cm2 /min) 

- 0.074 +0.054 0.9923 2.59 x 10-7 1.05 x 10-12 
-0.105 +0.074 0.9905 2.25 x 10-7 1.79 x 10-12 
-0.5 +0.105 0.9883 1.72 x 10-7 1.56 x 10-11 

-1 +0.5 0.9813 1.47 x 10-7 8.18 x 10-11 
-2 +1 0.9802 9.51 x 10-8 2.12 x 10-10 
-4+2 0.9765 5.01 x 10-8 4.47 x 10-10 

3.2. Effect of particle size in column bioleaching 

Column bioleaching experiments were conducted to study the effect of particle size on leaching kinetics 
and results are shown in Fig. 8a. The final dissolution of -200+90 mm size was only 61% while that of -
9.5+3.5 mm size reached about 92%. Two inflections points only occurred in three smaller sizes (-9.5+3.5, 
-19+9.5 and -31+19 mm) and there is no inflection point for larger particle sizes (31-200 mm) even though 
the dissolution was achieved more than 45%. This may be due to the slow dissolution rate and lack of 
the shift of rate-controlling step in the leaching of large particles. Another finding in Fig. 8a was that the 
dissolution rate of -50+31 mm and -90+50 mm were similar and it may be because of the inconsistency 
of copper composition present in ore. The dissolution rate of the largest particle size (+90-200 mm) was 
six times slower than that of the smallest particle size (+3.5-9.5 mm) within the range of first stage. 
Among the dissolution of three smaller particle sizes, the dissolution of -31+19 mm needs three-fold 
time of that of -9.5+3.5 mm to finish its first sub-stage.  

The dissolution rate of second stage was found slightly affected by particle size. This behavior was 
seen in Fig. 8b which shows the effect of particle size on dissolution rate of first stage in consistent with 
the result of chemical leaching of high grade ore under controlled redox potential. The slope of 0.619 for 
first stage indicated that dissolution of large particles were more sensitive to particle size than small 
particles (slope of 0.428). The effect of particle size for second stage was not obvious and this may be 
because of the breakage of the large particles into smaller ones and this was confirmed by the 
mineralogical studies which were discussed in section 3.4. The experimental data from Fig. 8a were also 
used to investigate the effect of particle size on the rate-controlling step during the leaching process. 
Table 7 shows the correlation coefficients (R2) of the fitted data for each stage of chalcocite dissolution 
using the equations of SCM (Eqs. 3-5). It was found that the R2 values were similar for each rate 
controlling steps during the fitting process for different size fractions.  This may be due to the low  
copper  content  in  the  ore and the increasing particle size which cause the slowness of dissolution rate.  

 
Fig. 8. a) Cu dissolution of different particle size low grade chalcocite ore ([Fe3+] = 13.93 g/dm3, pH = 1.54, 
Eh = 664 mV, temperature = 35 °C), b) Effect of particle size on dissolution rate during column bioleaching 
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Table 7. Correlation coefficients values of shrinking core kinetic models for bioleaching of low grade chalcocite 
ore ([Fe3+] = 13.93 g/dm3, pH = 1.54, Eh = 664 mV, temperature = 35 °C). 

Particle Size, mm 
Correlation coefficient for evaluated models, R2 

X 1-(1-X)1/3 1-3(1-X)2/3+2(1-X) 

First stage (0-45% Cu dissolution) 

-9.5+3.5 0.9897 0.9967 0.9300 
-19+9.5 0.9847 0.9946 0.9581 
-31+19 0.9628 0.9796 0.9831 
-50+31 0.9701 0.9778 0.9856 
-90+50 0.9266 0.9517 0.9980 
-200+90 0.9658 0.9824 0.9835 

First sub-stage (45-75% Cu dissolution) 

-9.5+3.5 0.9665 0.9771 0.9911 
-19+9.5 0.9778 0.9859 0.9861 
-31+19 0.9816 0.9890 0.9823 
-50+31 0.9880 0.9754 0.9936 
-90+50 0.9863 0.8785 0.9909 
-200+90 0.9987 0.9430 0.9990 

Second sub-stage (Above 75% Cu dissolution) 

-9.5+3.5 0.8443 0.8567 0.9692 
-19+9.5 0.9753 0.9783 0.9893 
-31+19 0.9862 0.9880 0.9769 

rate. However, it still can be concluded that the first stage of dissolution of particle size between 3.5 and 
31 mm was controlled by chemical reaction by evaluating the R2 values. Otherwise, R2 values for 
diffusion control were closer to one during the first sub-stage and it suggested that the chemical reaction 
control shifted to diffusion control since large particles undergone the breakage during the first sub-
stage and consequently causing the increase of surface area which attributed to chemical reaction faster. 
Similarly, diffusion through product layer controlled the kinetics of the second sub-stage dissolution of 
particle sizes between 3.5 to 31 mm and this result agrees with the results obtained from the chemical 
leaching of high grade chalcocite ore. On the other hand, the dissolution of particle sizes larger than 31 
mm were assumed to be controlled by one rate controlling step due to the lack of inflection point on the 
dissolution curves which indicated no alteration of kinetics in both first stage and second stage. In 
addition, the R2 values also suggested that product layer diffusion control was prominent during first 
and second stages since the gangue mineral present in the leached low grade ore act as elemental sulfur 
layer which were formed in the later stage of dissolution. Hence, it could be noted that the changes in 
reaction control mechanisms were obvious in the dissolution of small particles even though product 
layer diffusion control was the only rate-limiting stage during the dissolution of large particles. These 
findings suggested that the leaching of large particle size followed the shrinking core behavior and the 
product layer diffusion control becomes more significant. 

3.3. Effect of temperature in chemical leaching 

To determine the effect of temperature on chalcocite dissolution kinetics, -0.5+0.105 mm size fraction of 
chalcocite samples were leached at temperatures ranging from 30 to 60°C and the results were presented 
in Fig. 9. At high temperature (60°C), dissolution reached more than 94% in 72 hours while it took 336 
hours at 45°C. The main observation here was that the dissolution rate for second stage at low 
temperature 30°C was about half of that at 60°C and showing that temperature had prominent effect on 
second stage leaching. The inflection point which distinguishes first sub-stage and second sub-stage has 
occurred at low dissolution level in leaching at 30°C. It was well noted that only one inflection point 
appeared in the dissolution at 60°C and this translated into a shorter time was needed to yield higher 
dissolution than at low temperature.  
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Fig. 9. Effect of temperature on chalcocite dissolution. ([Fe3+] = 10 g/dm3, pH = 1.00~1.50, Eh = 750 mV, size 

fraction = -0.5+1 mm) 

3.4. Mineralogy 

The 95% leached residue was examined to study the changes of mineral phases using X-ray 
Diffractometer and the result is shown in Fig. 10. Comparing with the XRD pattern of unleached sample 
(Fig. 1), it was noted that the ore was mainly composed of chalcocite and pyrite. However, as for the 
leach residue, it was observed that most of the strong peaks were found to be elemental sulfur and 
peaks of covellite were less and weak. This implied that the residue was mainly composed of elemental 
sulfur and covellite because of the incomplete dissolution. 

 
Fig. 10. X-ray pattern for residue of chalcocite mineral (- 0.105+0.074 mm) 

SEM image and EDS analysis of chalcocite before leaching are illustrated in Fig. 11 and it can be seen 
that the chalcocite surface before leaching was rough and compact and EDS analysis also confirmed that 
copper and sulfur were major constituents on the surface. The BSE image of 60% leached chalcocite 
sample is presented in Fig.12a and its related EDS analysis results are tabulated in Table 8. It could be 
noted that the number of cracks and pore networks were increased in the 60% leached chalcocite 
compared to chalcocite sample. From the XRD pattern of 60% leached chalcocite particles shown in Fig 
12b, it can be seen that peak for Cu2S was rarely found while peaks of CuS phase and elemental sulfur 
was abundant. This result suggested that the transformation of Cu2S to CuS was almost completed at 
60% dissolution and this conclusion is also confirmed by the EDS results shown in Table 8. From Fig. 
13, the surface of residue of different particle size were porous and harsh and the surface of residue of 
smaller particles (Fig. 13a) was seen to be composed of elemental sulfur. However, there was few 
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amounts of copper ion in the form of covellite on the larger residue surface (Fig. 13b-c). This finding 
agrees well with the dissolution for larger particle of incomplete dissolution. Another interesting 
finding in Fig. 13b-c is that small channels and cracks were formed on the surface. This finding was the 
evidence of the breakage of larger particles during dissolution which increased the surface area of 
particle. Consequently, the dissolution rate of larger particles became similar to that of smaller particles 
during the second stage of leaching and diffusion through sulfur product layer became rate-controlling 
factor.  

 
Fig. 11. SEM images of -0.5+0.105 mm of unleached chalcocite particles 

 
Fig. 12. a) BSE images and b) XRD pattern of 60% leached chalcocite 

Table 8. EDS analysis of 60% leached chalcocite (at. %) 

Number Cu S  Si O 
1 45.04 49.22 0.00 5.74 
2 3.33 75.85 0.00 20.82 
3 0.00 0.00 47.70 52.30 

X-ray CT was used to investigate the changes in structures of sample before and after leaching 
because it can give 3-D mineral dissemination and crack distribution in large particles (Ghorbani et al., 
2011). The acquired X-ray CT data was used to reconstruct using TXM 3D viewer for the image analysis. 
Fig. 14 shows the X-ray CT 2D images of chalcocite particles before and after leaching and Fig. 14a 
shows that the unleached particle was mainly composed of chalcocite and natural defects such as dents 
and pores to few extents. However, the number of pores and its network significantly increased and 
cracks were also formed on the leaching residue (Fig. 14b). It is concluded that the formation of crack 
was the proof of particle breakage during leaching. The reconstructed 3D images of chalcocite particles 
before and after leaching are shown in Fig. 15 and it was worth investigating that the compact structure 
of particle completely conversed into porous and fractured particles after leaching. 
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Fig. 13. SEM images of chalcocite residues of different particle sizes: (a) -0.074+0.054 mm, (b) +1-0.5 mm,  

(c)-4+2 mm 

 
Fig.  14. X-ray CT images of chalcocite (a) before leaching and (b) after 95% leaching 
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Fig. 15. 3D model of chalcocite after reconstruction (a) before leaching (b) after leaching 

3.5. Implications for the heap bioleaching  

The results of this research provided appropriate information to optimize heap bioleaching in practice. 
1. The results of dissolution for particle sizes ranging from 0.054 to 200 mm suggested that particle size 

smaller than 31 mm should be used in order to optimize the performance of the heap because the 
dissolution of large particles was slow with low final dissolution compared with smaller particles.  

2. The strong dependence of first stage dissolution kinetics on the particle size indicated that the 
particle size is one of the important parameters to control the dissolution rate before achieving the 
second stage. Dissolution of larger particles (31-200 mm) was more influenced by particle size rather 
than dissolution of smaller particles (0.054-31 mm). However, the slight effect of particle size on 
dissolution kinetics in second stage implied that particle size is not related to the slow leaching 
kinetics of second stage. 

3. The investigation of particle breakage which leads to increasing surface area provided useful 
information for the shift of rate-determining steps from chemical reaction to product layer diffusion 
during second stage dissolution. The increasing number of pores at the end of dissolution process 
also suggested that diffusion of reactant and product accelerate dissolution rate of small particles. 
Based on the findings by SEM and X-ray CT data, the dissolution mechanism of large particles is 
demonstrated in Fig. 16. 

4. The occurrence of high activation energies during the second stage dissolution implied that the 
dissolution can be enhanced by increasing the heap temperature.  Similarly, sulfur layer became 
more porous at elevated temperature and allow to diffuse easily through it. 

 
Fig. 16. Schematic diagram of leaching of chalcocite large particles 

4.  Conclusions 

The dissolution of different particle sizes ranging from 0.054 to 200 mm of chalcocite ores in column 
leaching showed that particle size affected more obviously in the dissolution of large particle size (3.5-
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200 mm) than that of small particle size (0.054-4 mm). Similarly, the particle size had significant effect 
on the first stage rather than second stages and the inflection point of the dissolution disappeared in the 
dissolution of larger particles (31-200 mm) whereas two inflection points were normally found in the 
dissolution of small particles (0.054-31 mm). Kinetics analysis of dissolution of small particle sizes 
(0.054-4 mm) revealed that the first stage was controlled by fluid diffusion while chemical reaction and 
product layer diffusion controlled the second stage. However, product layer diffusion control became 
significant with increasing particle size during the second stages of dissolution of small particle sizes. 
Similarly, the first stage dissolution of large particle sizes (31-200 mm) were controlled by product layer 
diffusion since the gangue mineral in low grade ore act as product layer. The product layer diffusion 
control also controlled the second stage due to the lack of inflection point in the leaching of large 
particle. Elevated leaching temperature was found to accelerate the rate of second stage leaching. X-ray 
CT and SEM-EDS studies confirmed that cracks and pores were considerably increased due to the 
particle breakage during the second stage. The mineralogical studies by SEM-EDS and XRD confirmed 
that the residue after dissolution of Cu from ore was mainly composed of elemental sulfur which was 
the major reason for slow kinetics in chalcocite leaching. For better understanding of the role of 
elemental sulfur layer on leaching kinetics, chalcocite is being bacterially leached using sulfur oxidizing 
bacteria, mainly, Acidithiobacillus to investigate the morphology of bacterially oxidized sulfur layer and 
its implications for kinetics. 
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Nomenclature 

A: frequency factor 
b: stoichiometric coefficient 
Cfs:  Fe3+ concentration at the surface of the particle (mol/m3) 
De: effective diffusivity of sulfur layer (m2/s) 
Ea: activation energy (kJ/mol) 
k: rate constant 
kc:  kinetic parameter for reaction control (1/s) 
kcc: chemical reaction rate constant (m/s) 
kf :  kinetic parameter for film diffusion control (1/s) 
kl:  mass transfer coefficient of the liquid film (m3 liquid/(m2 surface .s)) 
kp: kinetic parameter for product diffusion control (1/s) 
M: molecular weight of particular sulfide mineral (kg/mol) 
r0: radius of original particle (m) 
R: universal gas constant (J/mol.K) 
R2: correlation coefficient 
t: time of reaction(s) 
T: temperature (K) 
x:  fraction of reacted copper 
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